Dynamic coloring of graphs having no K5 minor
نویسندگان
چکیده
منابع مشابه
Dynamic coloring of graphs having no K5 minor
We prove that every simple connected graph with no K5 minor admits a proper 4-coloring such that the neighborhood of each vertex v having more than one neighbor is not monochromatic, unless the graph is isomorphic to the cycle of length 5. This generalizes the result by S.-J. Kim, S. J. Lee, and W.-J. Park [Dynamic coloring and list dynamic coloring of planar graphs, submitted, 2012] on planar ...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولPacking Dicycle Covers in Planar Graphs with No K5-e Minor
We prove that the minimum weight of a dicycle is equal to the maximum number of disjoint dicycle covers, for every weighted digraph whose underlying graph is planar and does not have K5 − e as a minor (K5 − e is the complete graph on five vertices, minus one edge). Equality was previously known when forbidding K4 as a minor, while an infinite number of weighted digraphs show that planarity does...
متن کاملHomomorphisms of triangle-free graphs without a K5-minor
In the course of extending Grötzsch’s theorem, we prove that every triangle-free graph without a K5-minor is 3-colorable. It has been recently proved that every triangle-free planar graph admits a homomorphism to the Clebsch graph. We also extend this result to the class of triangle-free graphs without a K5-minor. This is related to some conjectures which generalize the Four-Color Theorem. Whil...
متن کاملDynamic Coloring of Graphs
A dynamic k-coloring of a graphG is a proper k-coloring of the vertices ofG such that every vertex of degree at least 2 in G will be adjacent to vertices with at least two different colors. The smallest number k for which a graph G has a dynamic k-coloring is the dynamic chromatic number χd(G). In this paper, we investigate the behavior of χd(G), the bounds for χd(G), the comparison between χd(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2016
ISSN: 0166-218X
DOI: 10.1016/j.dam.2016.01.022